On the Perpetual American Put Options for Level Dependent Volatility Models with Jumps
نویسنده
چکیده
We prove that the perpetual American put option price of level dependent volatility model with compound Poisson jumps is convex and is the classical solution of its associated quasi-variational inequality, that it is C except at the stopping boundary and that it is C everywhere (i.e. the smooth pasting condition always holds).
منابع مشابه
A Call-Put Duality for Perpetual American Options
It is well known [5], [1] that in models with time-homogeneous local volatility functions and constant interest and dividend rates, the European Put prices are transformed into European Call prices by the simultaneous exchanges of the interest and dividend rates and of the strike and spot price of the underlying. This paper investigates such a Call Put duality for perpetual American options. It...
متن کاملElementary Proofs on Optimal Stopping
Abstract Elementary proofs of classical theorems on pricing perpetual call and put options in the standard Black-Scholes model are given. The method presented does not rely on stochastic calculus and is also applied to give prices and optimal stopping rules for perpetual call options when the stock is driven by a Lévy process with no positive jumps, and for perpetual put options for stocks driv...
متن کاملOn perpetual American put valuation and first-passage in a regime-switching model with jumps
In this paper we consider the problem of pricing a perpetual American put option in an exponential regime-switching Lévy model. For the case of the (dense) class of phase-type jumps and finitely many regimes we derive an explicit expression for the value function. The solution of the corresponding first passage problem under a state-dependent level rests on a path transformation and a new matri...
متن کاملOptimal stopping and perpetual options for Lévy processes
Consider a model of a financial market with a stock driven by a Lévy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previou...
متن کاملOptimal Stopping and Perpetual Options for L Evy Processes Optimal Stopping and Perpetual Options for L Evy Processes
Solution to the optimal stopping problem for a L evy process and reward functions (e x ?K) + and (K ?e x) + , discounted at a constant rate is given in terms of the distribution of the overall supremum and innmum of the process killed at this rate. Closed forms of this solutions are obtained under the condition of positive jumps mixed-exponentially distributed. Results are interpreted as admiss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008